quinta-feira, 22 de outubro de 2015

PULSAR E QUASAR









ESSES FENOMENOS SAO CHAMADOS DE PULSAR QUASAR





Pulsares são estrelas de nêutrons muito pequenas e muito densas. Os pulsares podem apresentar um campo gravitacional até 1 bilhão de vezes maior que o campo gravitacional terrestre. Eles provavelmente são os restos de estrelas que entraram em colapso, fenômeno também conhecido como supernova. Foram observados pela primeira vez pela astrônoma Jocelyn Bell Burnell.
Ficheiro:Vela Pulsar jet seen by Chandra Observatory.ogv
Video do Pulsar de Vela de raios X.
À medida que uma estrela vai perdendo energia, sua matéria é comprimida em direção ao seu centro, ficando cada vez mais densa. Quanto mais a matéria da estrela se move em direção ao seu centro, mais rapidamente ela gira. Qualquer estrela possui um campo magnético que em geral é fraco, mas quando o núcleo de uma estrela é comprimido até se tornar uma estrela de nêutrons, o seu campo magnético também sofre compressão, com isso as linhas de campo magnético ficam mais densas, dessa forma tornam o campo magnético muito intenso, esse forte campo junto com a alta velocidade de rotação passa a produzir fortes correntes elétricas na superfície da estrela de nêutrons.
Os prótons e elétrons ligados de maneira "fraca" à superfície dessas estrelas são impulsionados para fora e fluem, pelas linhas do campo magnético, até os pólos norte e sul da estrela. O eixo eletromagnético da estrela de nêutrons não necessita estar alinhado com o eixo de rotação. Quando isso acontece, temos o pulsar.
Essas estrelas possuem duas fontes de radiação eletromagnética: A primeira é a radiação síncrotron que não é térmica, ela é emitida por partículas presas ao campo magnético dessas estrelas. A segunda é a radiação térmica que composta por raios-x, radiação óptica, etc. Essa radiação ocorre devido ao choque de partículas com a superfície junto aos pólos dessa estrelas.
Com o desalinhamento entre o eixo magnético e o de rotação, a estrela emite uma enorme quantidade de radiação pelos pólos, que varre diferentes direções no espaço, sendo assim só podemos detectar as estrelas de nêutrons quando nosso planeta está na direção da radiação emitida pela estrela. Essa radiação recebe o nome depulso, pois vem até nós como uma série de pulsos eletromagnéticos.
O pulsar emite um fluxo de energia constante. Essa energia é concentrada em um fluxo de partículas eletromagnéticas. Quando a estrela gira, o feixe de energia é espalhado no espaço, como o feixe de luz de um farol. Somente quando o feixe incide sobre a Terra é que podemos detectar os pulsares através de radiotelescópios.
A luz emitida pelos pulsares no espectro visível é tão pequena que não é possível observá-la a olho nu. Somente os radiotelescópios podem detectar a forte energia que eles emitem.



Um quasar (abreviação de quasi-stellar radio source, ou fonte de rádio quase-estelar) é um objeto astronômico distante e poderosamente energético com um núcleo galáctico ativo, de tamanho maior que o de uma estrela, porém menor do que o mínimo para ser considerado uma galáxia. Quasares foram primeiramente identificados como fontes de energia eletromagnética (incluindo ondas de rádio e luz visível) com alto desvio para o vermelho (redshift), que eram puntiformes e semelhantes aestrelas, em vez de fontes extensas semelhantes a galáxias. Os quasares são os maiores emissores de energia do Universo. Um único quasar emite entre 100 e 1000 vezes mais luz que uma galáxia inteira com cem bilhões de estrelas.[1]
Enquanto houve inicialmente alguma controvérsia quanto à natureza destes objetos — até tão recentemente quanto os anos 1980, não havia um consenso sobre isto — há agora um consenso científico[2] de que um quasar é uma região compacta com 10 a 10,000 vezes o raio de Schwarzschild do buraco negro supermassivo de uma galáxia, energizada pelo seu disco de acreção.



Quasares apresentam um redshift muito alto, que é um efeito da expansão do espaço entre o quasar e a Terra.[3] Eles estão entre os objetos mais luminosos, poderosos e energéticos no Universo. Eles tendem a existir no centro de galáxias jovens e ativas, e podem emitir até milhares de vezes a energia emitida pela Via Láctea. Quando combinado com a Lei de Hubble, a implicação do redshift é a de que os quasares estão muito longe e, portanto, objetos que fazem parte de uma etapa muito anterior na história do Universo. Os quasares mais luminosos brilham a uma taxa que pode exceder o brilho de uma galáxia média, equivalente a dois biliões (2×1012) de sóis. Esta radiação é emitida de forma praticamente homogênea pelo espectro, dos raios-X ao infravermelho, com um pico nas bandas de ultravioleta e óptica, sendo que alguns quasares são também fontes poderosas de emissão de rádio e raios-gama.
Nas imagens ópticas primitivas, os quasares pareciam com pontos de luz (ou seja, fonte puntiformes), indistinguíveis de estrelas, exceto pelo espectro peculiar. Com telescópios infravermelhos e o Hubble Space Telescope, a "galáxia hospedeira" em torno dos quasares foi identificada em alguns casos.[4] Estas galáxias são normalmente muito tênues para serem vistas contra o brilho do quasar, exceto com algumas técnicas especiais. A maioria dos quasares não podem ser vistos com telescópios pequenos, mas o quasar 3C 273, com uma magnitude aparente média de 12,9, é uma exceção. À distância de 2,44 bilhões de anos luz, é um dos objetos mais distantes diretamente observáveis com um equipamento amador.
Alguns quasares apresentam mudanças na luminosidade que são rápidas na faixa óptica e até mesmo mais rápidas nos raios-X. Como estas mudanças acontecem muito rapidamente, elas definem um limite superior no volume do quasar; os quasares não são muito maiores que o Sistema Solar.[5] Isto implica uma densidade de energia muito alta.[6] O mecanismo por trás das mudanças de brilho provavelmente envolveradiação relativística de jatos apontados diretamente em nossa direção. O quasar com o redshift mais alto conhecido (junho de 2011) é ULAS J1120+0641, com um redshift de 7,085, que corresponde a umadistância de aproximadamente 12.9 bilhões[7] de anos luz
Acredita-se que a energia dos quasares resulte da acreção de material em buracos negros supermaciços no núcleo de galáxias distantes, tornando-os uma versão luminosa de uma classe mais geral de objetos conhecidos como galáxias ativas. Como a luz não pode escapar do buraco negro supermassivo no centro dos quasares, a energia que escapa está sendo gerada do lado de fora do horizonte de eventos pelo estress gravitacional e intenssa fricção no material que está caindo.[8] Enormes massas centrais (106 a 109 massas Solares) foram medidas em quasares usando mapeamento de reverberação. Várias dezenas de galáxias próximas, que não apresentam sinais de um núcleo quasar, apresentam sinais de um buraco negro central semelhante em seus núcleos, por isto acredita-se que todas as galáxias maiores contém um, mas somente uma pequena fração emite radiação poderosa e são vistas como quasares. A matéria que está acrescendo ao buraco negro não cai diretamente, mas tem algum momento angular, em sua maioria, que fará com que se concentre em um disco de acreção. Os quasares também podem ser disparados ou re-disparados em galáxias normais quando elas fundem com uma nova fonte de matéria. Há uma teoria de que um quasar possa ser formado quando a galáxia Andrômeda colidir com nossa Via Láctea, em aproximadamente 3 a 5 bilhões de anos.[8] [9] [10


Mais de 200.000 quasares são conhecidos, a maioria do Sloan Digital Sky Survey. Todos os espectros observados tem redshift entre 0,056 e 7,065. Aplicando a Lei de Hubble a estes redshifts, chega-se ao resultado que eles estão entre 600 milhões[11] e 28 bilhões de anos luz de distância comóvel. Devido às grandes distâncias dos quasares mais distantes e a velocidade da luz finita, vemos os quasares e o espaço em torno deles como eles existiam no Universo primitivo.
A maioria dos quasares estão a distâncias superiores a três bilhões de anos. Apesar de parecerem apagados quando vistos da Terra, o fato de serem visíveis da distância em que se encontram deve-se ao fato de serem os objetos mais luminosos no Universo conhecido. O quasar que parece ser mais brilhante no céu é 3C 273, na constelaçãode Virgem. Ele tem uma magnitude aparente de 12,8 (brilhante o suficiente para ser visível através de um telescópio médio, mas tem uma magnitude absoluta de -26,7. De uma distância de 33 anos luz, este objeto brilharia no céu tanto quanto nosso Sol. A luminosidade deste quasar é, portanto, cerca de 2 biliões (2×1012) vezes mais brilhante que nosso Sol, ou cerca de 100 vezes o total da luminosidade de uma galáxia gigante média como a nossa Via Láctea. Entretanto, este valor assume que o quasar esteja emitindo energia em todas as direções. Um núcleo galáctico ativo pode ser associado com um jato poderoso de matéria e energia, não precisa estar irradiando em todas as direções. Em um Universo contendo centenas de bilhões de galáxias, a maior parte delas já teve um núcleo ativo bilhões de anos atrás e devem ser vistas localizadas a bilhões de anos luz de distância, é estatisticamente certo que milhares de jatos de energia estão apontados para nós, alguns mais diretamente que outros. Em muitos casos pode ser que quanto mais brilhante o quasar, mais diretamente seu jato está apontado para nós.
O quasar hiperluminoso APM 08279+5255 recebeu, quando foi descoberto em 1998, uma magnitude absoluta de -32,2, apesar da imagem de alta resolução do Hubble Space Telescope e do Telescópio Keck de 10 m revelarem que o sistema sofreu os efeitos de uma lente gravitacional. Um estudo da lente gravitacional neste sistema sugere que ele foi ampliado por um fator próximo a 10. Ele ainda é muito mais luminoso que os quasares próximos, como 3C 273




Os primeiros quasares foram descobertos na década de 1950, sendo registrados como fontes de emissão de rádio, a maioria sem um objeto visível correspondente. Usando pequenos telescópios em conjunto com o telescópio Lovell como um interferômetro, foi demonstrado que os quasares tinham um tamanho angular muito pequeno.[12]Centenas de objetos semelhantes foram registrados em 1960 e publicados no Third Cambridge Catalogue à medida que os astrônomos examinavam o céu em busca de uma contraparte visual à fonte de rádio. Em 1960, a fonte de rádio 3C 48 foi finalmente associada a um objeto óptico. Os astrônomos detectaram o que parecia uma estrela azul muito fraca na posição da fonte de rádio e obtiveram seu espectro. Contendo muitas linhas de emissão desconhecidas, o espectro anômalo desafiava qualquer interpretação - uma alegação feita por John Bolton de um objeto com redshift enorme não foi aceita.
Em 1962 uma importante descoberta foi feita. Outra fonte de rádio 3C 273, seria objeto de cinco ocultações pela Lua. Medidas feitas por Cyril Hazard e John Bolton durante uma das ocultações usando o Rádio Telescópio Parkes permitiu a Maarten Schmidt identificar ópticamente o objeto e obter um espectro óptico usando o Telescópio Hale, de 200 polegadas, em Monte Palomar. Este espectro revelou as mesmas linhas de emissão estranhas. Schmidt percebeu que elas eram na verdade as linhas espectrais do hidrogênio com um redshift de 15,8%. Esta descoberta mostrou que 3C 273 estava se afastando a uma velocidade de 47.000 km/s.[13] Esta descoberta revolucionou a observação de quasares e permitiu que outros astrõnomos encontrassem os redshifts das linhas de emissão de outras fontes de rádio. Conforme predito por Bolton, 3C 48 tinha um redshift de 37% da velocidade da luz.

A palavra quasar foi criada pelo astrofísico norte-americano Hong-Yee Chiu em 1964, na revista Physics Today, para descrever estes objetos misteriosos:


quinta-feira, 10 de setembro de 2015

RAIOS VERMELHOS


Este fenômeno está associado com descargas atmosféricas positivas, quando a nuvem tem um acúmulo de carga positiva e lança um raio. Descargas negativas, a partir de um acúmulo de carga negativa, são cerca de 10 vezes mais comuns, por esta razão, os sprites não estão fortemente associados com o que costumamos entender como raios, mas na verdade, o fenômeno não é tão incomum, só é pouco observado.
                                                                                                                                                                                                                                                                                                               RELAMPAGOS VERMELHOS